
Apple’s Predicament
NSPredicate Exploitation on macOS and iOS

$ whoami

● Vulnerability Researcher at Vigilant Labs

● This research was done at the Trellix Advanced Research Center

● Author of the radius2 symbolic execution framework

Introduction

Where it (sort of) began: FORCEDENTRY

● In late 2021 Citizen Lab and Google Project Zero collaborated to investigate a
0click iMessage exploit that they called FORCEDENTRY

● The initial entry point was a PDF disguised as a GIF that abused an integer
overflow in the JBIG2 image codec code

● It simply built a complete virtual machine using the basic JBIG2 refinement
operations

● Then it used NSPredicate to escape the sandbox

Background: Why is hacking iOS so hard?

● iOS has some of the best security features of any OS

● Common mitigations like ASLR

● Strict code signing prevents any dynamically generated code from being

executed

● Pointer Authentication Codes (PAC) prevent code reuse methods like ROP

● Applications each run in their own sandbox with permissions strictly limited to

only what the app requires

Background: Objective-C

● Objective-C is a superset of C with object oriented programming similar to
Smalltalk

● It is based on “message passing” where methods are invoked dynamically by
name (called a “selector”) at runtime

● [@”hello” stringByAppendingString: @” world”] results in the
NSString @”hello world”

● Methods without arguments and object properties can be accessed with
strings joined by periods like “student.lastName.uppercaseString”. This is
known as a keyPath

Background: Objective-C

What is an NSPredicate?

What is an NSPredicate?

● “A definition of logical conditions for constraining a search for a fetch or for
in-memory filtering.” - Official Documentation

● They are strings representing simple comparisons, such as
○ ‘grade == "7"’ or
○ ‘firstName LIKE "Juan" && age < 16’

● Used to filter arrays
● Initialized with +[NSPredicate predicateWithFormat:]
● Evaluated with methods like filteredArrayUsingPredicate:
● Implements NSCoding and can be sent to other processes or fully remotely!
● Used everywhere

Quick Explainer: XPC

● XPC is the name of the most common interprocess communication

mechanism on iOS and macOS

● It allows one process to call a method in a remote process, sending the

arguments and potentially also passing a callback function for the reply

● NSPredicate is often used in XPC calls to filter the returned results

● This is foreshadowing

Anatomy of an NSPredicate

● Predicates are built using
NSExpression and
NSPredicateOperator
instances

● Expressions are parsed from
the format string using a
lexical parser made with flex

● This is done in the function
_qfqp2_performParsing

What can an NSPredicate do?

● Anything

What is an NSPredicate actually?

● Essentially it is eval() for Objective-C
● NSPredicate allows the Objective-C runtime to be fully dynamically scripted
● This power largely comes from the FUNCTION keyword which allows any

method to be called on an object.
● Additionally keyPath expressions can also execute a series of methods that

take no arguments
● Invoking ‘CAST(“<class name>”, “Class”)’ yields a reference to any class
● CodeColorist first described the power of NSPredicate in his amazing blog

post “See No Eval”

What is an NSPredicate actually?

What is an NSPredicate actually?

● Additionally the [CNFileServices dlsym::] method could be used to get the

signed address of any C function

● These function pointers could be called with [NSInvocation invokeUsingIMP:]

effectively sidestepping PAC

● Essentially anything that could be done in native Objective-C was possible to

do dynamically within an NSPredicate

Scripting with NSPredicate

● NSVariableExpression :: “$x” :: Variable getting
○ == [context getObjectForKey: @”x”]

● NSVariableAssignmentExpression :: “$x := 5” :: Variable setting
○ == [context setObject: @5 forKey: @”x”]

● NSFunctionExpression :: “FUNCTION(‘alkali’, ‘appendString:’, ‘!’)” :: Functions
○ == [@”alkali” appendString: @”!”]
○ Expressions like “now()” and “sum({1,2,3})” call selectors on _NSPredicateUtilities

● NSKeyPathExpression :: “self.longLongValue” :: Properties

Scripting with NSPredicate

● NSAggregateExpression :: “{1, 2, 3}” :: Arrays but also sequential operations
○ == @[@1, @2, @3]

● NSSubqueryExpression :: “SUBQUERY(list, $x, $x == 5)” :: Bounded Loops
○ == for (NSObject* x in list) { if (x == @5) [result addObject: x]; }

● NSTernaryExpression :: “TERNARY($x == 5, 42, 1337)” :: Conditionals
○ == x == 5 ? 42 : 1337

An NSPredicate Brainfuck Interpreter

An NSPredicate Brainfuck Interpreter

NSPredicate Security

● Before FORCEDENTRY NSPredicates were virtually unlimited

● The only restrictions were NSPredicateVisitors, classes implemented by

daemons that evaluated remote NSPredicate instances

● NSPredicateVisitor is a protocol with three methods classes must implement
○ visitPredicate:

○ visitPredicateExpression:

○ visitPredicateOperator:

● Many implementations use the expressionType property to filter out

dangerous function and keyPath expressions

Revisiting FORCEDENTRY

● The JBIG2 virtual machine crafted a fake object that when deallocated
caused a series of NSFunctionExpression instances to evaluate

● These expressions deleted the exploit “GIF” file and sent a new payload to
the unsandboxed CommCenter process

● This payload contained a serialized array of objects that would perform
several things immediately upon deserialization in CommCenter

○ An AVSpeechSynthesisVoice object will cause a series of libraries to be loaded, including the
PrototypeTools.framework

○ A PTSection object containing a single PTRow will call reloadEnabledRows which will in turn
lead to the evaluation of an NSPredicate controlled by the sender

○ This predicate collects a bunch of information about the target before another stage is ran

NSPredicate Mitigations

NSPredicate Mitigations

After FORCEDENTRY the power of NSPredicate was limited in iOS 15

● Deny-lists of classes and methods were added to restrict what could be done
within an NSPredicate

● The ‘CAST(..., “Class”)’ construction was forbidden
● Calling methods on classes other than _NSPredicateUtilities is also

disallowed

*Most of these restrictions only apply to Apple processes and are enforced based
on a global variable named __predicateSecurityFlags

NSPredicate Mitigations

● Additionally Apple removed [CNFileServices dlsym::]

● NSInvocation was forbidden and changes were made to make it less useful

for executing arbitrary functions

● In general Apple attempted to make it difficult to instantiate arbitrary objects

within an NSPredicate

Bypassing NSPredicate Mitigations

● The list of forbidden classes and methods was way too small

● An arbitrary write could be achieved with -[NSValue getValue:]

● The security flag could be simply unset with

‘FUNCTION(0, “getValue:”, $_predicateSecurityFlagsAddress)’

● Additionally the lengths of the dictionaries containing the forbidden classes

and methods could be set to 0 removing any remaining security checks

Bypassing NSPredicate Mitigations

Apple Strikes Back: NSPredicate Mitigations Again

● All Objective-C methods have a signature, a string of characters that denote the
argument and return types

● Function Expression argument types were restricted to not be pointers by excluding
“^” and “?” types

● The predicate security policy flags were moved into CoreFoundation
○ _CFPredicatePolicyData replaced __predicateSecurityFlags
○ _CFPredicatedRestrictedClasses returns the dictionary of forbidden classes
○ _CFPredicateRestrictedSelectors returns the dictionary of forbidden methods

Apple Strikes Back: NSPredicate Mitigations Again

Bypassing NSPredicate Mitigations Again

● (Un)fortunately several dangerous types were overlooked, the simplest being

the char* type “*”

● This allowed the same kind of arbitrary write using -[NSString getCString:]

● The security flag could be unset using

‘FUNCTION(“\x00”, “getCString:”, $_predicateSecurityFlagsAddr)’

● Once again NSPredicates could perform unlimited scripting of Objective-C on

iOS < 16.3. These bypasses were assigned CVE-2023-23530

Bypassing NSPredicate Mitigations Again

Bypassing NSPredicate Mitigations Again

Bypassing PAC with NSPredicate

● Even though [CNFileServices dlsym::] was removed it is still possible to get

the PAC signed address of dlsym with

+[DTCompanionControlServiceV2 dlsymFunc]

● This function and any others can be called using

-[RBStrokeAccumulator applyFunction:info:]

● Any exported C function can be called with up to four arbitrary arguments,

bypassing PAC

Bypassing PAC with NSPredicate

Bypassing PAC with NSPredicate

An NSPredicate that calls NSLog(@”hmmmmmmmmmmm”)

It's pretty complicated

Exploiting NSPredicate

Just Say NO to NSPredicateVisitor

● Daemons each implement their own unique NSPredicateVisitor class

● Nearly all use the expressionType field to check for dangerous expressions

● When an NSPredicate XPC argument is deserialized this expressionType is

simply read from the serialized data sent by an untrusted process

● Setting every expressionType to 0 bypassed nearly all visitors. This bypass

was assigned CVE-2023-27937

● This vulnerability was fixed by returning the correct constant value for each

subclass of NSExpression

Just Say NO to NSPredicateVisitor

Just Say NO to NSPredicateVisitor

Exploiting iOS Daemons

● Many different daemons could be exploited using this bypass
○ coreduetd
○ contextstored
○ appstored
○ OSLogService
○ SpringBoard

● Using these vulnerabilities a malicious app could gain access to app, location,
and notification data, including message contents

● A malicious app could install other apps, and potentially execute arbitrary
code on paired devices as well

Demo: Exploiting SpringBoard

Conclusion

The Future of NSPredicate

● Apple has finally begun to seriously limit NSPredicate by forbidding function

expressions that do not exclusively return objects and take object arguments

● This now applies to all processes, not just first party Apple programs

● Much can still be accomplished with NSPredicate and it will continue to be

useful in exploits for the foreseeable future

Thank You!

